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Grand Vision

More effective use of cluster resources
Lower response time
Higher throughput

Transparent fault tolerance
No application modifications
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Buffered Coscheduling

Buffered Coscheduling (BCS) is a new methodology to:

improve system responsiveness

increase resource utilization,

tolerate inefficient programs (with communication and
load imbalance),

implement fault-tolerance,

in a large-scale parallel computer or a cluster of
workstations

STORM – p.3



Buffered Coscheduling: Vision
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Buffered Coscheduling tries to achieve these goals by
greatly simplyfing the system software (resource
management, communication libraries and fault-tolerance)
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Buffered Coscheduling: Implementation

µ KERNEL
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Buffered Coscheduling implements resource management,
communication libraries and fault-tolerance on top of a
common �kernel
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STORM
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STORM

In this talk we will focus on STORM, a resource manager
implemented on the Buffered Coscheduling �kernel
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Resource Management

Resource allocation for parallel jobs

Job launch and termination

Cluster management

Monitoring and Debugging
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STORM

STORM (Scalable TOol for Resource Management)
uses the Buffered Coscheduling �kernel

Easy to port

The key innovation behind STORM is a software
architecture that enables resource management to
exploit low-level network features

As a result of this HPC-application-like design, STORM
is orders of magnitude faster than the best reported
results in the literature
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Outline

Overview of resource management

STORM architecture

Implementation

Performance evalution

Scalability analysis
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Characteristics of Desktop versus Cluster

Characteristic Desktop Cluster

Mean time between

user-visible failures

Years Days down to hours

Scheduling Timeshared Batch queued or gang

scheduled with large

quanta

Job-launching speed � �
second Arbitrarily long (batch)

or many seconds

(gang scheduled)
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State of the art in Resource Management

Resource Managers (e.g., PBS, LSF, RMS, LoadLeveler,
Maui) are typically implemented using

TCP/IP – favors portability over performance

Non scalable algorithms for the distribution/collection of
data and control messages – favors development time
over performance

Performance non important for small clusters, but
crucial for large clusters � need fast and scalable
resource management

If the cluster has a powerful, scalable network, why aren’t we using
it?
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STORM mechanisms

STORM is based on only three mechanisms

XFER-AND-SIGNAL Transfer (PUT) a block of data from local
memory to the global memory of a set of nodes
(possibly a single node).

TEST-EVENT Local synchronization

COMPARE-AND-WRITE Global query with reduction variable.

Efficient and scalable implementation of these mechanisms

� STORM scalable
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STORM implementation structure

STORM functions
heartbeat, file trans-
fer, termination de-
tection

(STORM helper functions) flow control, queue
management

STORM mechanisms

XFER-AND-SIGNAL,
TEST-EVENT,
COMPARE-AND-
WRITE

Network primitives
remote DMA, net-
work conditionals,
event signaling, . . .
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Portability of the STORM mechanisms

Network COMPARE-AND-WRITE ( �s) XFER-AND-SIGNAL (MB/s)

Gigabit Ethernet

�� �	� 
� Unknown

Myrinet

� �	� 
� � �� �

Infiniband

� �	� 
 � Unknown

QsNET

� �� � �� ���

BlueGene/L � � �  �
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Hardware support for XFER-AND-SIGNAL
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Hardware support for XFER-AND-SIGNAL

STORM – p.16



Hardware support for XFER-AND-SIGNAL
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Hardware support for XFER-AND-SIGNAL
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Hardware support for XFER-AND-SIGNAL
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Hardware support for COMPARE-AND-WRITE
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Hardware support for COMPARE-AND-WRITE
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Hardware support for COMPARE-AND-WRITE
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Hardware support for COMPARE-AND-WRITE

The STORM mechanisms XFER-AND-SIGNAL and
COMPARE-AND-WRITE can be easily and efficiently
implemented on top of the hardware broadcast.
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Hardware support for COMPARE-AND-WRITE

The STORM mechanisms XFER-AND-SIGNAL and
COMPARE-AND-WRITE can be easily and efficiently
implemented on top of the hardware broadcast.
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Scalability of the STORM Mechanisms
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XFER-AND-SIGNAL and COMPARE-AND-WRITE scale
efficiently on Lemieux, Pittsburgh Supercomputing Center.
Less than 10 �s on 768 nodes/3072 processors
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Experimental Results

64 nodes/256 processors ES40 Alphaserver cluster

2 independent rails of Quadrics

Linux 2.4.3

Files are placed in ramdisk, in order to avoid I/O
bottlenecks and expose the performance of the
resource management algorithms.
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Launch times (unloaded system)
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The launch time is constant when we increase the number
of processors. STORM is highly scalable
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Launch times (loaded system 12MB)
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Launch time is more sensitive to network load rather
than CPU load

In the worst-case scenario it still takes only 1.5 seconds
to launch a 12 MB file on 256 processors
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Measured and estimated launch times
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The model shows that in an ES40-based Alphaserver a
12 MB binary can be launched in 135 ms on 16,384 nodes
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Measured and predicted performance of existing job launchers

We compare the job launching performance of STORM with

rsh (remote shell)

RMS (Resource Management System), production
resource manager of the Quadrics network

Sandia’s Cplant

Bproc
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Measured and predicted performance of existing job launchers
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Relative performance of Cplant, BProc, and STORM
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Effect of time quantum with an MPL of 2
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Cluster-wide jobs can be scheduled as fast a local process
on a desktop OS.
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Effect of node scalability
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The scheduling quantum is insensitive to the number of
nodes
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A selection of scheduling quanta found in the literature

Resource Manager Minimal feasible scheduling quantum

RMS

���� � � �

milliseconds on 15 nodes (1.8% slowdown)

SCore-D

� � �

milliseconds on 64 nodes (2% slowdown)

STORM

�

milliseconds on 64 nodes (no observable slowdown)
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Conclusions

STORM uses an innovative design based on a small set
of data-transfer and synchronization mechanisms:

XFER-AND-SIGNAL

TEST-EVENT

COMPARE-AND-WRITE

STORM is orders of magnitude faster than the best
reported results in the literature for both job launching
and process scheduling.
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Conclusions (continued)

STORM isolates network specifics

provides portability

fast implementation � all STORM is fast

can take advantage of network features (HW multicast,
programmable NICs, etc.)
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Resources

More information can be found at the following URLs:

Resource management
http://www.c3.lanl.gov/par arch
http://www.c3.lanl.gov/˜fabrizio/publications.html

Quadrics network
http://www.quadrics.com and
http://www.c3.lanl.gov/˜fabrizio/quadrics.html
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Quadrics Network: Elan
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